Comparison of scheduling methods for the learning rate of neural network language models (Modèles de langue neuronaux: une comparaison de plusieurs stratégies d'apprentissage) [in French]
نویسندگان
چکیده
If neural networks play an increasingly important role in natural language processing, training issues still hinder their dissemination in the community. This paper studies different learning strategies for neural language models (including two new strategies), focusing on the adaptation of the learning rate. Experimental results show the impact of the design of such strategy. Moreover, provided the choice of an appropriate training regime, it is possible to efficiently learn language models that achieves state of the art results in machine translation with a lower training time and a reduced impact of hyper-parameters. Mots-clés : Réseaux de neurones, modèles de langue n-gramme, traduction automatique statistique.
منابع مشابه
Continuous space models with neural networks in natural language processing. (Modèles neuronaux pour la modélisation statistique de la langue)
Les modèles de langage ont pour but de caractériser et d’évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale dans de nombreux cadres d’application comme la reconnaissance automatique de la parole, la traduction automatique, l’extraction et la recherche d’information. La modélisation actuellement état de l’art est la modélisation "historique" dite n-gramme associée à d...
متن کاملÉtude Comparative d'un Détecteur CFAR Neuronal de Plusieurs Cibles Radar dans un Fouillis de type K-Distribution
This paper presents the development and performance evaluation of a particular Multi-Layer Perceptron neural network (MLP) classifier for radar target detection in a noisy, non-Gaussian environment using CFAR (Constant False Alarm Rate). The Technique, architecture details and principle of working of the MLP-CFAR detector training algorithm are presented. A comparison of the MLP-CFAR performanc...
متن کاملParallel Implementation of Rbf Neural Networks Ecole Normale Supérieure De Lyon Parallel Implementation of Rbf Neural Networks
This report presents several parallel implementations, on a MIMD machine, of a learning algorithm called OLS (Orthogonal Least Squares) for RBF (Radial Basis Function) neural networks. The sequential version is rst described, and a straightforward parallel version is proposed. Two variants are developed, one of them reducing the complexity of the algorithm, and the other one improving the load ...
متن کاملStatistical Model Building for Neural Networks - Proceedings AFIR 1996 - Nürnberg, Germany
Neural networks are a new, very flexible class of statistical and if applied to economic data econometric models. Basically, neural networks are a generalization of nonlinear regression models and can therefore be applied to all kinds of regression problems. Since neural networks do not require the specification of a certain structural form, they are particularly suited for modelling very compl...
متن کاملApprentissage de modèles de langue neuronaux pour la recherche d'information
Information Retrieval (IR) faces different difficulties, notably those related to vocabulary mismatch issues and term dependencies. In the last few years, language models based on neural networks have been proposed to deal with both term dependencies and vocabulary mismatch issues in complex natural language processing tasks. However, to be efficient, these models require huge amounts of traini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014